Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs

نویسندگان

چکیده

Learning representations for graphs plays a critical role in wide spectrum of downstream applications. In this paper, we summarize the limitations prior works three folds: representation space, modeling dynamics and uncertainty. To bridge gap, propose to learn dynamic graph hyperbolic first time, which aims infer stochastic node representations. Working with present novel Hyperbolic Variational Graph Neural Network, referred as HVGNN. particular, model dynamics, introduce Temporal GNN (TGNN) based on theoretically grounded time encoding approach. uncertainty, devise variational autoencoder built upon proposed TGNN generate normal distributions. Furthermore, reparameterisable sampling algorithm distribution enable gradient-based learning Extensive experiments show that HVGNN outperforms state-of-the-art baselines real-world datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

Hybed: Hyperbolic Neural Graph Embedding

Neural embeddings have been used with great success in Natural Language Processing (NLP). They provide compact representations that encapsulate word similarity and attain state-of-the-art performance in a range of linguistic tasks. The success of neural embeddings has prompted significant amounts of research into applications in domains other than language. One such domain is graph-structured d...

متن کامل

Self-Organizing Graphs - A Neural Network Perspective of Graph Layout

The paper presents self-organizing graphs, a novel approach to graph layout based on a competitive learning algorithm. This method is an extension of self-organization strategies known from unsupervised neural networks, namely from Kohonen's self-organizing map. Its main advantage is that it is very exibly adaptable to arbitrary types of visualization spaces, for it is explicitly parameterized ...

متن کامل

Structured Neural Network for Nonlinear Dynamic Systems Modeling

The use of artificial neural networks (ANN) for nonlinear system modeling is a field where still there is much theoretical work to be done. A structured ANN which obtains neural models of nonlinear systems is presented. Those neural models are Fourier-series based. To check the goodness of the method, conventional difference equations are re-modeled via ANN and their respective input/outputs co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2021

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v35i5.16563